Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 480
Filter
1.
BMJ Open ; 13(5): e065068, 2023 05 25.
Article in English | MEDLINE | ID: covidwho-20233699

ABSTRACT

OBJECTIVES: Respiratory protective equipment is critical to protect healthcare workers from COVID-19 infection, which includes filtering facepiece respirators (FFP3). There are reports of fitting issues within healthcare workers, although the factors affecting fitting outcomes are largely unknown. This study aimed to evaluate factors affecting respirator fitting outcomes. DESIGN: This is a retrospective evaluation study. We conducted a secondary analysis of a national database of fit testing outcomes in England between July and August 2020. SETTINGS: The study involves National Health Service (NHS) hospitals in England. PARTICIPANTS: A total of 9592 observations regarding fit test outcomes from 5604 healthcare workers were included in the analysis. INTERVENTION: Fit testing of FFP3 on a cohort of healthcare workers in England, working in the NHS. PRIMARY AND SECONDARY OUTCOME MEASURES: Primary outcome measure was the fit testing result, that is, pass or fail with a specific respirator. Key demographics, including age, gender, ethnicity and face measurements of 5604 healthcare workers, were used to compare fitting outcomes. RESULTS: A total of 9592 observations from 5604 healthcare workers were included in the analysis. A mixed-effects logistic regression model was used to determine the factors which affected fit testing outcome. Results showed that males experienced a significantly (p<0.05) higher fit test success than females (OR 1.51; 95% CI 1.27 to 1.81). Those with non-white ethnicities demonstrated significantly lower odds of successful respirator fitting; black (OR 0.65; 95% CI 0.51 to 0.83), Asian (OR 0.62; 95% CI 0.52 to 0.74) and mixed (OR 0.60; 95% CI 0.45 to 0.79. CONCLUSION: During the early phase of COVID-19, females and non-white ethnicities were less likely to have a successful respirator fitting. Further research is needed to design new respirators which provide equal opportunity for comfortable, effective fitting of these devices.


Subject(s)
COVID-19 , Occupational Exposure , Respiratory Protective Devices , Male , Female , Humans , Retrospective Studies , State Medicine , COVID-19/prevention & control , Equipment Design
2.
ACS Appl Bio Mater ; 4(5): 3891-3908, 2021 05 17.
Article in English | MEDLINE | ID: covidwho-2265619

ABSTRACT

The outbreak of coronavirus disease (COVID-19) has transformed the daily lifestyles of people worldwide. COVID-19 was characterized as a pandemic owing to its global spread, and technologies based on engineered materials that help to reduce the spread of infections have been reported. Nanotechnology present in materials with enhanced physicochemical properties and versatile chemical functionalization offer numerous ways to combat the disease. Facemasks are a reliable preventive measure, although they are not 100% effective against viral infections. Nonwoven materials, which are the key components of masks, act as barriers to the virus through filtration. However, there is a high chance of cross-infection because the used mask lacks virucidal properties and can become an additional source of infection. The combination of antiviral and filtration properties enhances the durability and reliability of masks, thereby reducing the likelihood of cross-infection. In this review, we focus on masks, from the manufacturing stage to practical applications, and their abilities to combat COVID-19. Herein, we discuss the impacts of masks on the environment, while considering safe industrial production in the future. Furthermore, we discuss available options for future research directions that do not negatively impact the environment.


Subject(s)
Masks/trends , Nanotechnology/trends , Pandemics/prevention & control , COVID-19/prevention & control , COVID-19/transmission , Decontamination , Disease Transmission, Infectious , Equipment Design , Filtration , Humans , Respiratory Aerosols and Droplets , SARS-CoV-2 , Textiles
3.
Ulus Travma Acil Cerrahi Derg ; 29(4): 463-470, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2258537

ABSTRACT

BACKGROUND: The purpose of our study was to determine the efficacy of intubation with VieScope® and Macintosh laryngoscope in different scenarios of simulated COVID-19 patients by paramedics wearing personal protective equipment (PPE) for aerosol gener-ating procedures (AGPs). METHODS: Study was designed as a prospective, observational, randomized, crossover simulation trial. 37 paramedics took part in the study. They performed endotracheal intubation (ETI) of a person suspected of COVID-19. Intubation was performed using VieS-cope® and Macintosh laryngoscopes in two research scenarios: Scenario A - normal airway and Scenario B - difficult airway. Both the order of participants and the methods of intubation were random. RESULTS: In Scenario A, time to intubation using VieScope® and Macintosh laryngoscope amounted to 35.3 (IQR; 32-40) seconds and 35.8 (IQR: 30-40)s, respectively. Nearly all participants performed ETI successfully both with VieScope® and Macintosh laryngo-scope (100% vs. 94.6%). In scenario B, intubation with the VieScope®, compared to the Macintosh laryngoscope, was associated with a shorter intubation time (p<0.001), a higher success rate of the first intubation attempt (p<0.001), a better visualization degree glottis (p=0.012) and ease of intubation (p<0.001). CONCLUSION: Our analysis suggests that the use of a VieScope® compared to Macintosh laryngoscope in difficult airway intuba-tion performed by paramedics wearing PPE-AGP is associated with shorter intubation times, greater intubation efficiency as well as better visualization of the glottis. Additional clinical trials are necessary to confirm the obtained results.


Subject(s)
Allied Health Personnel , COVID-19 , Humans , Prospective Studies , Manikins , Intubation, Intratracheal , Equipment Design
4.
Infect Control Hosp Epidemiol ; 43(8): 993-996, 2022 08.
Article in English | MEDLINE | ID: covidwho-2274033

ABSTRACT

OBJECTIVE: Discomfort and device-related pressure injury (DRPI) caused by N95 filtering facepiece respirators (FFRs) are common. The use of prophylactic hydrocolloid dressings is one of the strategies that may improve comfort and reduce DRPI. In this study, we investigated the impact of these dressings on N95 respirator fit. METHODS: We performed a repeat quantitative fit testing through the Respiratory Protection Program on 134 healthcare workers (HCWs), who applied hydrocolloid dressings on the bridge of their nose under the N95 FFRs that they passed the initial fit test with, but reported discomfort with the FFR. RESULTS: With the hydrocolloid dressings in place, the fit-test pass rate for the semirigid cup style (3M 1860) was 94% (108 of 115); for the the vertical flat-fold style (BYD), the pass rate was 85% (44 of 52); for the duckbill style (BSN medical ProShield and Halyard Fluidshield), the pass rate was 81% (87 of 108); and for the 3-panel flat-fold style (3M Aura) N95 FFRs, the pass rate was 100% (3 of 3). There was a statistically significant reduction in the overall fit factors for both the vertical flat-fold and duckbill type N95 respirators after the application of hydrocolloid dressings. CONCLUSIONS: Hydrocolloid dressings are likely to disturb the mask seal for nonrigid-style N95 FFRs, particularly the vertical flat-fold style and the duckbill style N95 FFRs. Given the risk of mask seal disturbance of N95 respirators as shown in this study, we advocate that any HCW requiring the use of prophylactic dressings should undergo repeat quantitative fit testing with the dressing in place prior to using the dressing and mask in combination.


Subject(s)
Occupational Exposure , Respiratory Protective Devices , Bandages, Hydrocolloid , Equipment Design , Humans , N95 Respirators , Occupational Exposure/prevention & control
5.
Am J Med ; 135(11): 1280-1281, 2022 11.
Article in English | MEDLINE | ID: covidwho-2268570

Subject(s)
Masks , Policy , Humans , Equipment Design
6.
Epidemiol Prev ; 44(5-6): 330-332, 2020.
Article in Italian | MEDLINE | ID: covidwho-2240354

ABSTRACT

Systematic reviews have shown a prevalence close to 20% of gastrointestinal symptoms in COVID-19 positive patients, with nearly 40% of patients shedding viral RNA in their faeces, even if it may not be infectious, possibly because of inactivation by colonic fluid.According to current evidence, this virus is primarily transmitted by respiratory droplets and contact routes, including contaminated surfaces. The virus is quite stable on stainless steel, being detected up to 48-72 hours after application. Therefore, some individuals can be infected touching common contaminated surfaces, such as bathroom taps. Taps can be underestimated critical points in the transmission chain of the infection. Indeed, just by turning the knob, people leave germs on it, especially after coughing over their hands, sneezing, and/or blowing their nose. After handwashing with soap, user take back their germs when turning the knob. Paradoxically, the following user collects the germs back on his/her fingers by implementing a preventive measure, maybe before putting food into the mouth or wearing contact lenses.The Italian National Institute of Health recommends to clean and disinfect high-touched surfaces, but it is unrealistic and inefficient to do so after each tap use. As an alternative, new toilets should install long elbow-levers - or at least short levers - provided that people are educated to close them with the forearm or the side of the hand. This is already a standard measure in hospitals, but it is particularly important also in high-risk communities, such as retirement homes and prisons. It would be important also in schools, in workplaces, and even in families, contributing to the prevention both of orofaecal and respiratory infections.In the meantime, people should be educated to close existing knobs with disposable paper towel wipes or with toilet paper sheets.


Subject(s)
Bathroom Equipment/virology , COVID-19/prevention & control , Fomites/virology , Hand Hygiene , Health Education , SARS-CoV-2/physiology , COVID-19/transmission , Equipment Contamination , Equipment Design , Feces/virology , Female , Humans , Italy , Male , SARS-CoV-2/isolation & purification , Touch
7.
Biosensors (Basel) ; 13(2)2023 Feb 07.
Article in English | MEDLINE | ID: covidwho-2237489

ABSTRACT

Recently, infectious diseases, such as COVID-19, monkeypox, and Ebola, are plaguing human beings. Rapid and accurate diagnosis methods are required to preclude the spread of diseases. In this paper, an ultrafast polymerase chain reaction (PCR) equipment is designed to detect virus. The equipment consists of a silicon-based PCR chip, a thermocycling module, an optical detection module, and a control module. Silicon-based chip, with its thermal and fluid design, is used to improve detection efficiency. A thermoelectric cooler (TEC), together with a computer-controlled proportional-integral-derivative (PID) controller, is applied to accelerate the thermal cycle. A maximum of four samples can be tested simultaneously on the chip. Two kinds of fluorescent molecules can be detected by optical detection module. The equipment can detect viruses with 40 PCR amplification cycles in 5 min. The equipment is portable, easily operated, and low equipment cost, which shows great potential in epidemic prevention.


Subject(s)
COVID-19 , Microfluidic Analytical Techniques , Nucleic Acids , Viruses , Humans , Silicon , Microfluidics , Polymerase Chain Reaction/methods , Nucleic Acids/analysis , Nucleic Acid Amplification Techniques , Equipment Design
9.
J Hosp Infect ; 134: 89-96, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2220983

ABSTRACT

Regulations for measures to protect against SARS-CoV-2 transmission vary widely around the world, with very strict regulations in Germany where respirators (filtering face piece FFP2 or comparable) are often mandatory. The efficiency of respirators, however, depends essentially on the tight facial fit avoiding the bypass of contaminated air via gaps between mask and wearer's face. The facial fit can be verified in a fit test. The aim of this review was to describe the quantitative fit test results depending on the respirator designs. A literature search revealed 29 suitable studies. Of all respirators with circumferential head straps, three-panel folded dome-shaped respirators showed the best fit (80.8% of 4625 fit tests passed), followed by rigid-dome-shaped respirators (72.4% of 8234 fit tests passed), duckbill-shaped respirators (31.6% of 2120 fit tests passed), and coffee-filter-shaped respirators (30.9% of 3392 fit tests passed). Respirators with ear loops showed very poor tight fit (3.6% of 222 fit tests passed). In four randomized control trials, single-use respirators were not shown to be superior to surgical masks for the prevention of laboratory-confirmed viral respiratory infections, even when adjusted with a fit test. Therefore, we consider the mandatory use of respirators to be disproportionate and not supported by evidence. Further evidence should be generated, in which scenarios respirators might provide an effective benefit as part of occupational health and safety. For situations with confirmed benefits, only high-quality disposable respirators with head straps or respiratory protective equipment of higher protective levels should be used.


Subject(s)
COVID-19 , Occupational Exposure , Respiratory Protective Devices , Humans , COVID-19/prevention & control , SARS-CoV-2 , Equipment Design , Masks , Ventilators, Mechanical , Occupational Exposure/prevention & control
10.
PLoS One ; 18(1): e0281152, 2023.
Article in English | MEDLINE | ID: covidwho-2224479

ABSTRACT

Individuals who are unable to be clean shaven for religious, medical or cultural reasons are unable to wear a filtering facepiece respirator (FFR), as the respirator cannot provide adequate protection against aerosol-transmissible diseases. There is currently a paucity of validated techniques to ensure the safe inclusion of bearded healthcare workers in the pandemic workforce. We propose to undertake a healthcare-based multi-modal evaluation study on the elastic band beard cover for FFR technique, examining the quantitative fit test (QNFT) results, usability and skill level of participants with repeated assessments over time. This is a prospective study conducted through the Respiratory Protection Program at the Royal Melbourne Hospital. Healthcare workers are invited to participate if they require respiratory protection and cannot shave for religious, cultural or medical reasons. An online education package on the use of respiratory protective equipment and the elastic band beard cover for FFR technique is provided. This is followed by a face-to-face session, where the participant will receive: one-on-one training; undergo a skill assessment on their donning, doffing and user seal check techniques; complete QNFTs and a usability survey. Participants will be invited to repeat the assessment within 3 months of the first session and at 12 months. This study involves multimodal and repeated assessments of an elastic band beard cover for FFRs. The findings of this study will provide information on: whether this simple technique can provide safe, consistent and effective respiratory protection; whether it will interfere with occupational activities; and whether it is comfortable and tolerable for the duration of wear. This is of significant importance to the health workforce around the world, who cannot shave but require access to respiratory protective equipment during the COVID-19 pandemic.


Subject(s)
COVID-19 , Occupational Exposure , Respiratory Protective Devices , Humans , Prospective Studies , Pandemics/prevention & control , Occupational Exposure/prevention & control , Equipment Design , COVID-19/epidemiology , COVID-19/prevention & control , Ventilators, Mechanical , Delivery of Health Care
12.
Crit Care ; 26(1): 338, 2022 11 04.
Article in English | MEDLINE | ID: covidwho-2108872

ABSTRACT

We conducted a proof of concept study where Anapnoguard endotracheal tubes and its control unit were used in 15 patients with COVID-19 acute respiratory distress syndrome. Anapnoguard system provides suction, venting, rinsing of subglottic space and controls cuff pressure detecting air leakage through the cuff. Alpha-amylase and pepsin levels, as oropharyngeal and gastric microaspiration markers, were assessed from 85 tracheal aspirates in the first 72 h after connection to the system. Oropharyngeal microaspiration occurred in 47 cases (55%). Episodes of gastric microaspiration were not detected. Patient positioning, either prone or supine, did not affect alpha-amylase and pepsin concentration in tracheal secretions. Ventilator-associated pneumonia (VAP) rate was 40%. The use of the AG system provided effective cuff pressure control and subglottic secretions drainage. Despite this, no reduction in the incidence of VAP has been demonstrated, compared to data reported in the current COVID-19 literature. The value of this new technology is worth of being evaluated for the prevention of ventilator-associated respiratory tract infections.


Subject(s)
COVID-19 , Pneumonia, Ventilator-Associated , Respiratory Distress Syndrome , Humans , Intensive Care Units , Pepsin A , Pronation , Equipment Design , Pneumonia, Ventilator-Associated/etiology , Intubation, Intratracheal/adverse effects , alpha-Amylases
13.
Sensors (Basel) ; 22(15)2022 Aug 08.
Article in English | MEDLINE | ID: covidwho-1994141

ABSTRACT

The development of MEMS acoustic resonators meets the increasing demand for in situ detection with a higher performance and smaller size. In this paper, a lithium niobate film-based S1 mode Lamb wave resonator (HF-LWR) for high-sensitivity gravimetric biosensing is proposed. The fabricated resonators, based on a 400-nm X-cut lithium niobate film, showed a resonance frequency over 8 GHz. Moreover, a PMMA layer was used as the mass-sensing layer, to study the performance of the biosensors based on HF-LWRs. Through optimizing the thickness of the lithium niobate film and the electrode configuration, the mass sensitivity of the biosensor could reach up to 74,000 Hz/(ng/cm2), and the maximum value of figure of merit (FOM) was 5.52 × 107, which shows great potential for pushing the performance boundaries of gravimetric-sensitive acoustic biosensors.


Subject(s)
Acoustics , Biosensing Techniques , Electrodes , Equipment Design , Vibration
14.
Nat Med ; 28(8): 1538, 2022 08.
Article in English | MEDLINE | ID: covidwho-1991644
15.
PLoS One ; 17(6): e0268542, 2022.
Article in English | MEDLINE | ID: covidwho-1987130

ABSTRACT

Proper respiratory tract protection is the key factor to limiting the rate of COVID-19 spread and providing a safe environment for health care workers. Traditional N95 (FFP2) respirators are not easy to regenerate and thus create certain financial and ecological burdens; moreover, their quality may vary significantly. A solution that would overcome these disadvantages is desirable. In this study a commercially available knit polyester fleece fabric was selected as the filter material, and a total of 25 filters of different areas and thicknesses were prepared. Then, the size-resolved filtration efficiency (40-400 nm) and pressure drop were evaluated at a volumetric flow rate of 95 L/min. We showed the excellent synergistic effect of expanding the filtration area and increasing the number of filtering layers on the filtration efficiency; a filter cartridge with 8 layers of knit polyester fabric with a surface area of 900 cm2 and sized 25 × 14 × 8 cm achieved filtration efficiencies of 98% at 95 L/min and 99.5% at 30 L/min. The assembled filter kit consists of a filter cartridge (14 Pa) carried in a small backpack connected to a half mask with a total pressure drop of 84 Pa at 95 L/min. In addition, it is reusable, and the filter material can be regenerated at least ten times by simple methods, such as boiling. We have demonstrated a novel approach for creating high-quality and easy-to-breathe-through respiratory protective equipment that reduces operating costs and is a green solution because it is easy to regenerate.


Subject(s)
COVID-19 , Respiratory Protective Devices , Aerosols , COVID-19/prevention & control , Equipment Design , Filtration/methods , Humans , Masks , Materials Testing/methods , Polyesters
17.
PLoS One ; 17(6): e0254736, 2022.
Article in English | MEDLINE | ID: covidwho-1933199

ABSTRACT

In bioinformatics, alignment is an essential technique for finding similarities between biological sequences. Usually, the alignment is performed with the Smith-Waterman (SW) algorithm, a well-known sequence alignment technique of high-level precision based on dynamic programming. However, given the massive data volume in biological databases and their continuous exponential increase, high-speed data processing is necessary. Therefore, this work proposes a parallel hardware design for the SW algorithm with a systolic array structure to accelerate the forward and backtracking steps. For this purpose, the architecture calculates and stores the paths in the forward stage for pre-organizing the alignment, which reduces the complexity of the backtracking stage. The backtracking starts from the maximum score position in the matrix and generates the optimal SW sequence alignment path. The architecture was validated on Field-Programmable Gate Array (FPGA), and synthesis analyses have shown that the proposed design reaches up to 79.5 Giga Cell Updates per Second (GCPUS).


Subject(s)
Algorithms , Computational Biology , Computational Biology/methods , Databases, Factual , Equipment Design , Sequence Alignment , Software
18.
Nat Commun ; 13(1): 513, 2022 01 26.
Article in English | MEDLINE | ID: covidwho-1915267

ABSTRACT

Loss of photoreceptors in atrophic age-related macular degeneration (AMD) results in severe visual impairment. Since the low-resolution peripheral vision is retained in such conditions, restoration of central vision should not jeopardize the surrounding healthy retina and allow for simultaneous use of the natural and prosthetic sight. This interim report, prespecified in the study protocol, presents the first clinical results with a photovoltaic substitute of the photoreceptors providing simultaneous use of the central prosthetic and peripheral natural vision in atrophic AMD. In this open-label single group feasibility trial (NCT03333954, recruitment completed), five patients with geographic atrophy have been implanted with a wireless 2 x 2 mm-wide 30 µm-thick device, having 378 pixels of 100 µm in size. All 5 patients achieved the primary outcome of the study by demonstrating the prosthetic visual perception in the former scotoma. The four patients with a subretinal placement of the chip demonstrated the secondary outcome: Landolt acuity of 1.17 ± 0.13 pixels, corresponding to the Snellen range of 20/460-20/565. With electronic magnification of up to a factor of 8, patients demonstrated prosthetic acuity in the range of 20/63-20/98. Under room lighting conditions, patients could simultaneously use prosthetic central vision and their remaining peripheral vision in the implanted eye and in the fellow eye.


Subject(s)
Electric Stimulation Therapy/instrumentation , Electric Stimulation Therapy/methods , Geographic Atrophy/therapy , Macular Degeneration/therapy , Vision Disorders/therapy , Visual Perception , Visual Prosthesis , Aged , Aged, 80 and over , Electric Stimulation , Equipment Design , Eyeglasses , Humans , Retina , Treatment Outcome , Visual Acuity
19.
Sensors (Basel) ; 22(13)2022 Jun 27.
Article in English | MEDLINE | ID: covidwho-1911522

ABSTRACT

The recent SARS-CoV2 pandemic has put a great challenge on university courses. Electronics teaching requires real laboratory experiences for students, which cannot be realized if access to physical infrastructures is prohibited. A possible solution would be to distribute to students, at home, electronics equipment suitable for laboratory experiments, but no reasonable product is currently available off-the-shelf. In this paper, the design and development of a very-low-cost experimental board tailored to these needs is presented. It contains both programmable prototyping circuitry based on a microcontroller and an FPGA and a set of measurement instruments, similar to the ones found on a typical lab desk, such as a digital storage oscilloscope, multimeter, analog signal generator, logic state analyzer and digital pattern generator. A first board, suitable for analog and digital electronics experiments, has been designed and manufactured, and is described in this paper. The board has been successfully used in master's degrees and PhD courses.


Subject(s)
COVID-19 , Signal Processing, Computer-Assisted , Electronics , Equipment Design , Humans , RNA, Viral , SARS-CoV-2
20.
Sensors (Basel) ; 22(10)2022 May 19.
Article in English | MEDLINE | ID: covidwho-1875743

ABSTRACT

The computation efficiency and flexibility of the accelerator hinder deep neural network (DNN) implementation in embedded applications. Although there are many publications on deep neural network (DNN) processors, there is still much room for deep optimization to further improve results. Multiple dimensions must be simultaneously considered when designing a DNN processor to reach the performance limit of the architecture, including architecture decision, flexibility, energy efficiency, and silicon cost minimization. Flexibility is defined as the ability to support as many multiple networks as possible and to easily adjust the scale. For energy efficiency, there are huge opportunities for power efficiency optimization, which involves access minimization and memory latency minimization based on on-chip memory minimization. Therefore, this work focused on low-power and low-latency data access with minimized silicon cost. This research was implemented based on an ASIP (application specific instruction set processor) in which an ISA was based on the caffe2 inference operator and the hardware design was based on a single instruction multiple data (SIMD) architecture. The scalability and system performance of our SoC extension scheme were demonstrated. The VLIW was used to execute multiple instructions in parallel. All costs for data access time were thus eliminated for the convolution layer. Finally, the processor was synthesized based on TSMC 65 nm technology with a 200 MHz clock, and the Soc extension scheme was analyzed in an experimental model. Our design was tested on several typical neural networks, achieving 196 GOPS at 200 MHz and 241 GOPS/W on the VGG16Net and AlexNet.


Subject(s)
Neural Networks, Computer , Silicon , Equipment Design , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL